
Eur. Phys. J. D 13, 109–119 (2001) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We continue the study of parametric down conversion within the framework of the Wigner
representation, by using a Maxwellian approach developed in a recent paper [A. Casado et al., Eur. Phys.
J. D 11, 465 (2000)]. This gives a mechanism, inside the crystal, for the production of the down-converted
radiation. We obtain the electric field to second order in the coupling constant by using the Green’s function
method, and compare our treatment with the standard Hamiltonian approach. The spectrum of the down-
converted radiation is calculated as a function of the parameters of the nonlinear crystal (in particular the
length) and the radius of the pumping beam.

PACS. 42.50.Ar Photon statistics and coherence theory – 03.65.Sq Semiclassical theories and applications
– 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

For many years the state of the radiated field correspond-
ing to quantum parametric down-conversion (PDC from
now on) has been studied. A single monochromatic laser
converts into pairs of highly correlated photons fulfilling
the frequency matching conditions [1,2]. PDC is usually
considered as a typical quantum phenomena, not only be-
cause there is no solution of the classical Maxwell equa-
tions which represents the so called “spontaneous split-
ting” of the laser, but also because there is a very short
correlation time between the conjugate beams [3,4] and
a high visibility of interference patterns in joint detection
experiments [5]. These properties have been used in order
to test Bell’s inequalities [6] and to show other nonclassical
aspects of the down-converted light [7].

The theory of PDC in the Wigner function formalism
of quantum optics was treated in an earlier series of papers
by using a standard Hamiltonian approach [8–11]. We de-
scribed how the radiated field is produced via the coupling
between the laser beam and the zeropoint radiation inside
the crystal. We also studied the process of light detection,
stressing the fact that all detectors integrate the light in-
tensity over a large time window [11]. We should recall
that the Hamiltonian formalism was originally developed,
during the 1960’s, in parallel [13] with a treatment, rather
similar to ours, which also took account of the zeropoint
field. Indeed the name by which PDC was known during
that period was spontaneous parametric fluorescence, and
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such ways of describing the interaction persist up to the
present day.

More recently we have developed the theory of PDC
by starting from the Maxwell equations inside the crystal,
in place of the usual Hamiltonian standard model [12].
We showed that the production and propagation of PDC
light is entirely equivalent to classical electromagnetic field
theory, provided that we consider the zeropoint field en-
tering the crystal along with the laser beam. An explicit
expression for the first order electric field amplitude in
the far field approximation was obtained by using the
Green’s function method, in order to calculate the cross-
correlation of photon counts.

Here we shall use the same formulation in order to
study the spectral properties of the PDC radiation. In
Section 2 we summarize the main results of the Wigner
representation of second-order nonlinear optical phenom-
ena in the Maxwellian approach [12], and in Section 3 we
calculate the electric field to second order in the coupling
parameter. In addition to the part of the field that corre-
sponds to the splitting of the laser (PDC), there appear
some new contributions coming from the up and down
conversion of the zeropoint field. In Section 4 we ana-
lyze the relation between the different contributions of
the field to the autocorrelation, and a comparison is made
with the results in the Hamiltonian approach. Finally, in
Section 5 we obtain the PDC spectrum, i.e. the intensity
of the down-converted radiation, at each point, as a func-
tion of the frequency, and we consider the long and short
crystal approximations.
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2 Wigner representation of PDC

The study of PDC in the Wigner representation within
a Maxwellian approach starts with the evolution equation
for the electric field operator in the Heisenberg picture. By
considering a second-order nonlinear isotropic medium,
the corresponding equation is [12]

∇2Ê − 1
c2f

∂2Ê

∂t2
− ∂2

∂t2

[∫ t

−∞
χ(t− t′)Ê(t′)dt′

]
= β

∂2Ê2

∂t2
,

(1)

cf being the speed of light in free space. χ is the linear
susceptibility of the medium, and β is a coupling constant
which is defined by

β ≡ 2µ0d, (2)

where d is the bilinear susceptibility and µ0 the magnetic
permeability of free space.

Equation (1) is an inhomogeneous wave equation in
which the source of radiation is a quadratic function of
Ê. In order to solve it an adiabatic switch on of the in-
teraction is considered by substituting λ(t)β for β, λ(t)
being a slowly varying function of time, so that λ(t) = 0
at t → −∞, and λ(t) = 1 at t ≥ 0. The state of the ra-
diation at t → −∞ is that corresponding to a laser, i.e.
a coherent state |φ〉, fulfilling

Ê(+)|φ〉 = E
(+)
laser|φ〉, (3)

Ê(+) being the part of the electric field operator that only
contains destruction operators:

Ê(+) = i
∑
k

(
~ωk

ε0L3
0

) 1
2

âke−iωkt+ik·r, (4)

L3
0 being the normalization volume, and ωk = |k|cf .

It is possible to use the vacuum field as the initial state
if we perform the following change of variables:

Ê(+) = Ê′(+) +E
(+)
laser. (5)

By substituting (5) into equation (1), we have

∇2(Ê′ +Elaser)−
1
c2f

∂2(Ê′ +Elaser)
∂t2

− ∂2

∂t2

[∫ t

−∞
χ(t− t′)[Ê′(t′) +Elaser(t′)]dt′

]
= λ(t)β

∂2(Ê′ +Elaser)2

∂t2
· (6)

Let us restrict our attention to equation (6) for t ≥ 0.
If there were no laser beam incoming to the nonlinear
medium, i.e. if we made Elaser = 0 in equation (6), then

this equation would represent the evolution of the vacuum
due to the presence of the crystal, and would give rise
to just a modified vacuum. If we take into account that
the laser is very intense, it seems reasonable to discard
the term β∂2Ê

′2/∂t2 from (6), because its contribution
to the radiated field is very small compared with the oth-
ers. Hence equation (6) reduces to the following equation,
which is linear in the field operators:

∇2(Ê′ +Elaser)−
1
c2f

∂2(Ê′ +Elaser)
∂t2

− ∂2

∂t2

[∫ t

−∞
χ(t− t′)[Ê′(t′) +Elaser(t′)]dt′

]
= β

∂2(2ElaserÊ
′ +E2

laser)
∂t2

· (7)

Let us now pass to the Wigner representation. As is well-
known, the evolution equations of the Wigner field ampli-
tudes are the same as the Heisenberg equations of motion
of the quantum field amplitudes, whenever these are lin-
ear. Then, in order to go to the Wigner representation we
simply remove the hats in equation (7) (we shall remove
also the prime in order to simplify the notation), so that

∇2(E +Elaser)−
1
c2f

∂2(E +Elaser)
∂t2

− ∂2

∂t2

[∫ t

−∞
χ(t− t′)[E(t′) +Elaser(t′)]dt′

]
= β

∂2(2ElaserE +E2
laser)

∂t2
· (8)

Because we are in the Heisenberg picture the state does
not change with time and we shall use the Wigner function
corresponding to the initial state, i.e. the Wigner function
of the vacuum state

Wvacuum({αk}, {α∗k}) =
∏
k

2
π

e−2αkα
∗
k , (9)

αk being the complex amplitude corresponding to the
mode k of the zeropoint radiation

EZP = E
(+)
ZP +E

(−)
ZP ,

where

E
(+)
ZP = i

∑
k

(
~ωk

ε0L3
0

) 1
2

αke−iωkt+ik·r; E
(−)
ZP = [E(+)

ZP ]∗.

(10)

E
(+)
ZP is the positive frequency part of the vacuum field.

On the other hand, from (9) it follows trivially that

〈αk〉 = 0; 〈αkαk′〉 = 0; 〈αkα
∗
k′〉 =

1
2
δk,k′ . (11)
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3 Second-order perturbation theory
for the calculation of the radiated field

The electric field can be expressed as an expansion in pow-
ers of the small parameter β [9]:

E(r, t) = E0(r, t) + βE1(r, t) + β2E2(r, t) + ... (12)

Now a set of coupled equations is obtained by substituting
(12) into (8):

∇2(E0 +Elaser)−
1
c2f

∂2(E0 +Elaser)
∂t2

− ∂2

∂t2

[∫ t

−∞
χ(t− t′)[E0(t′) +Elaser(t′)]dt′

]
= 0, (13)

∇2E1 −
1
c2f

∂2E1

∂t2
− ∂2

∂t2

[∫ t

−∞
χ(t− t′)E1(t′)dt′

]
=
∂2(2E0Elaser +E2

laser)
∂t2

, (14)

∇2E2 −
1
c2f

∂2E2

∂t2
− ∂2

∂t2

[∫ t

−∞
χ(t− t′)E2(t′)dt′

]
= 2

∂2(E1Elaser)
∂t2

, (15)

and so on. To zeroth order in β, E0 is given by
equation (10), i.e. E0 ≡ EZP. On the other hand, from
now on we shall consider Elaser as a quasimonochromatic
beam of frequency ω0, wave vector k0, and radius R:

Elaser = E
(+)
laser +E

(−)
laser,

where

E
(+)
laser(r, t) = V (r) e−iω0t+ik0·r;

V (r) = V0 e−
x2+y2

2R2 ; k0 =
ω0

c0
uz , (16)

c0 being the velocity of light corresponding to the fre-
quency ω0. We are taking a coordinate system OXYZ,
O being the center of the crystal and uz an unitary vector
in the direction of the pumping. Strictly speaking (16) is
a solution of the homogeneous wave equation only in the
limit case R → ∞ [1], but we follow the usual approx-
imation, equation (16), for the lateral size of the beam.
In experimental practice the laser is often focussed in a
point several centimeters beyond the crystal. As a result
the shape of the laser beam within the crystal is conical,
rather than cylindrical. The net effect is that the light
emitted from differents points of the crystal is focussed in
a point placed at a finite distance of the crystal, where
the detector is placed. In our calculation we will ignore
this complication and consequently the emitted signal and
idler beams are taken as consisting of parallel rays.

By using the well-known retarded solution of the inho-
mogeneous wave equation, the radiated field to first order
can be obtained from (14) in the following way:

E1(r, t) = − 1
4π

∫
Ω

d3r′
S1(r′, t− |r−r′|

c′ )
|r− r′| , (17)

where the integration is carried over the volume Ω of the
crystal. c′ is the speed of light (as a function of the fre-
quency) in the non linear medium and

S1 ≡
∂2(2EZPElaser +E2

laser)
∂t2

(18)

is the source of the field. It, and therefore E1, contains
terms of frequencies ω0 − ωk, ωk − ω0, ω0 + ωk, 2ω0 and
0. let us consider them briefly.

(i) The terms of frequency 2ω0 (second harmonic gen-
eration) and frequency 0 (rectification of the input laser
field) come from E2

laser. As is usual in PDC experiments,
we shall deal only with the part of the spectrum which
contains oscillatory terms of frequency lower than ω0, so
we can ignore them.

The rest of the terms come from 2EZPElaser. They are
the following: (ii) a term of frequency ω0 − ωk (ω0 > ωk)
that we shall call EPDC

1 ; (iii) a term of frequency ωk− ω0

(ωk > ω0). This term is a down-conversion of the zero
point field (ZPF) and hence we shall call it EZDC

1 . In order
to keep its frequencies lower than ω0, ωk must also fulfill
2ω0 > ωk. These two terms can be written together as

EDC
1 (r, t) ≡ EPDC

1 (r, t) +EZDC
1 (r, t)

=
i

2π

∑
k

(
~ω
ε0L3

0

) 1
2

αk(ω0 − ω)2e−i(ω−ω0)t

×
∫
Ω

d3r′
V (r′)ei(k−k0)·r′e

i(ω−ω0) |r−r′|
cω0−ω

|r− r′| + c.c ;

0 < ω < 2ω0, (19)

where, for 0 < ω < ω0 it represents EPDC
1 , and for

ω0 < ω < 2ω0, EZDC
1 . We have simplified the nota-

tion writing ωk ≡ ω. On the other hand, we have put
cω0−ω ≡ c(ω0 − ω), because the components of the radi-
ated field travel with different velocities inside the crystal.
Here we have made the customary assumption of consid-
ering the crystal embedded in a linear medium with the
same dispersion [14].

(iv) Finally, the term of frequency ω0 + ωk. This is
an up-conversion of the ZPF – we shall call it EZUC

1 –;
its frequencies are always greater than ω0 and therefore
we ignore its contribution to E1. Nevertheless it plays an
important role in E2 and we must write its expression:

EZUC
1 (r, t) =

i
2π

∑
k

(
~ω
ε0L3

0

) 1
2

αk(ω0 + ω)2e−i(ω0+ω)t

×
∫
Ω

d3r′
V (r′)ei(k0+k)·r′e

i(ω+ω0) |r−r′|
cω0+ω

|r− r′| + c.c, (20)
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where cω0+ω ≡ c(ω0 + ω).
In the far field approximation

1
|r− r′| ≈

1
r

; |r− r′| ≈ r
(

1− r · r′
r2

)
, (21)

equations (19, 20) read

EDC
1 (r, t) =

i
2πr

∑
k

(
~ω
ε0L3

0

) 1
2

× αk(ω0 − ω)2e−i(ω−ω0)te
i(ω−ω0) r

cω0−ω

×
∫
Ω

d3r′ V (r′)ei(k−k0)·r′e
−i(ω−ω0) r·r′

rcω0−ω + c.c ;

0 < ω < 2ω0, (22)

EZUC
1 (r, t) =

i
2πr

∑
k

(
~ω
ε0L3

0

) 1
2

× αk(ω0 + ω)2e−i(ω0+ω)te
i(ω0+ω) r

cω0+ω

×
∫
Ω

d3r′ V (r′)ei(k0+k)·r′e
−i(ω+ω0) r·r′

rcω0+ω + c.c. (23)

We will now calculate the second-order field. From (15),
we have

E2(r, t) = − 1
4π

∫
Ω

d3r′′
S2(r′′, t− |r−r′′|

c′ )
|r− r′′| , (24)

where

S2 ≡
∂2(2E1Elaser)

∂t2
· (25)

Therefore the frequencies that appear are in principle
those of E1 plus or minus ω0. Let us analyse the con-
tributions of E1 (EPDC

1 , EZDC
1 and EZUC

1 ) that induce fre-
quencies lower than ω0 in E2:

(i) from EPDC
1 , the frequencies will be ω0 − ω ± ω0.

Remembering that ω < ω0 − see discussion above
equation (19) − the “+” sign can never give a con-
tribution of frequency lower than ω0. Then only the
contribution with “−” sign is relevant;

(ii) EZDC
1 gives frequencies ω − ω0 ± ω0, where we had

ω > ω0. Therefore the “+” sign does not contribute,
and the “−” sign contributes only if ω < 3ω0;

(iii) finally, EZUC
1 gives ω + ω0 ± ω0 without restriction,

in principle, for ω. Hence, only the contribution with
“−” sign must be considered in case that ω < ω0.

The former three terms will be called EPDC
2 , EZDC

2 and
EZUC

2 respectively. To evaluate them in the far field ap-
proximation we shall use the expressions (19, 20) for the
first-order field, together with equations (16, 21, 24, 25).

After some easy algebra we obtain:

EPDC
2 (r, t) =

i
4π2r

∑
k

(
~ω
ε0L3

0

) 1
2

αk(ω0 − ω)2ω2

× e−iωteiω r
cω

∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)

× eik0·(r′′−r′)eik·r′e−iω r·r′′
rcω e

i(ω−ω0) |r
′−r′′|
cω0−ω

|r′′ − r′| + c.c, (26)

EZUC
2 (r, t) =

i
4π2r

∑
k

(
~ω
ε0L3

0

) 1
2

αk(ω0 + ω)2ω2

× e−iωteiω r
cω

∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)

× eik0·(r′−r′′)eik·r′e−iω r·r′′
rcω e

i(ω+ω0) |r
′−r′′|
cω0+ω

|r′′ − r′| + c.c, (27)

EZDC
2 (r, t) =

i
4π2r

∑
k

(
~ω
ε0L3

0

) 1
2

αk(ω0 − ω)2(ω − 2ω0)2

× e−i(ω−2ω0)te
i(ω−2ω0) r

cω−2ω0

∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)

× e−ik0·(r′+r′′)eik·r′e
−i(ω−2ω0) r·r′′

rcω−2ω0 e
i(ω−ω0) |r

′−r′′|
cω0−ω

|r′′ − r′| + c.c.

(28)

4 Field autocorrelation

This section is devoted to the calculation of the autocor-
relation function of the field, which is necessary for the
study of the spectrum. To start with, let us consider the
expression of the field corresponding to frequencies less
than ω0:

E = EZP+β(EPDC
1 +EZDC

1 )+β2(EPDC
2 +EZUC

2 +EZDC
2 ),

(29)

where, for notation simplicity, we have not written the
dependence on position and time.

The autocorrelation, at a given position and different
times t and t′, is given by:

〈E(t)E(t′)〉 = 〈EZP(t)EZP(t′)〉
+ β[〈EZP(t)EPDC

1 (t′)〉+ 〈EZP(t′)EPDC
1 (t)〉]

+ β[〈EZP(t)EZDC
1 (t′)〉+ 〈EZP(t′)EZDC

1 (t)〉]
+ β2[〈EPDC

1 (t)EPDC
1 (t′)〉+ 〈EZP(t)EPDC

2 (t′)〉
+ 〈EZP(t′)EPDC

2 (t)〉+ 〈EZDC
1 (t)EZDC

1 (t′)〉
+ 〈EZP(t)EZUC

2 (t′)〉+ 〈EZP(t′)EZUC
2 (t)〉

+ 〈EPDC
1 (t)EZDC

1 (t′)〉+ 〈EPDC
1 (t′)EZDC

1 (t)〉
+ 〈EZP(t)EZDC

2 (t′)〉+ 〈EZP(t′)EZDC
2 (t)〉]. (30)
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The terms 〈EPDC
1 EZDC

1 〉 are null because the two fields in-
volved contain modes of different frequencies, hence being
uncorrelated. In principle, the rest of correlations in this
equation should be calculated to get the spectrum of the
radiation. Nevertheless, because of the spectrum is related
to the Fourier transform of the field, only a few terms of
the above expression are relevant, namely those that vary
with t and t′ as a function of the difference t− t′, because
the other kind of time dependence that appears in (30)
will average to zero. By taking into account the expres-
sions of the different contributions of the field calculated
in Section 3, and (11), it can be easily seen that only the
correlations corresponding to the first, fourth and fifth
lines of (30) will contribute. The rest of the terms will not
give a net contribution to the spectrum. Hence we shall
retain, from equation (30), only the relevant correlations.
We have:

〈E(t)E(t′)〉 = 〈EZP(t)EZP(t′)〉+ β2[〈EPDC
1 (t)EPDC

1 (t′)〉
+ 〈EZP(t)EPDC

2 (t′)〉+ 〈EZP(t′)EPDC
2 (t)〉

+ 〈EZDC
1 (t)EZDC

1 (t′)〉+ 〈EZP(t)EZUC
2 (t′)〉

+ 〈EZP(t′)EZUC
2 (t)〉]. (31)

The first term on the right-hand side corresponds to pure
zeropoint field and we will not calculate it because it is
irrelevant for our purposes (see first paragraph of Sect. 5).

Consider the contribution of the first-order parametric
down-converted term. By using (22, 11), we have

〈EPDC
1 (t)EPDC

1 (t′)〉 = 〈EPDC(+)
1 (t)EPDC(−)

1 (t′)〉+ c.c

=
1

4π2r2ε0

1
L3

0

∑
k

~ω(ω0 − ω)4cos[(ω0 − ω)(t− t′)]

×
∣∣∣∣∫
Ω

d3r′ V (r′)ei(k−k0)·r′e
−i(ω−ω0) r·r′

rcω0−ω

∣∣∣∣2
=

1
4π2r2ε0

1
L3

0

∑
k

~ω(ω0 − ω)4cos[(ω0 − ω)(t− t′)]

×
∫
Ω

d3r′ V (r′)ei(k−k0)·r′e
−i(ω−ω0) r·r′

rcω0−ω

×
∫
Ω

d3r′′ V (r′′)e−i(k−k0)·r′′e
i(ω−ω0) r·r′′

rcω0−ω , (32)

where ω < ω0. Replacing the sum by an integral, i.e. mak-
ing

∑
k /L

3
0 →

∫
d3k/(2π)3, and changing to polar spher-

ical coordinates (kx, ky, kz) → (ω, θ, ψ), θ being the angle
between k and r′ − r′′, we obtain, after performing the
integration over θ and ψ:

〈EPDC
1 (t)EPDC

1 (t′)〉 =
2~

(2π)4r2ε0

×
∫ ω0

0

dω (ω0 − ω)4ω
3

c3ω
cos[(ω0 − ω)(t− t′)]

×
∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)e
−i(ω−ω0)

r·(r′−r′′)
rcω0−ω

× e−ik0·(r′−r′′)sinc
[
ω|r′ − r′′|

cω

]
· (33)

In order to calculate the contribution to the autocorre-
lation of the second-order parametric down-converted ra-
diation we shall use equations (10, 26). By taking into
account (11), we arrive to the following expression:

〈EZP(t)EPDC
2 (t′)〉+ 〈EZP(t′)EPDC

2 (t)〉

=
1

4π2rε0

1
L3

0

∑
k

~ω3(ω0 − ω)2cos[ω(t− t′)]ei ωrcω

×
∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)

× e−ik0·(r′−r′′)eik·(r′−r)e−iω r·r′′
rcω e

i(ω−ω0) |r
′−r′′|
cω0−ω

|r′′ − r′| + c.c.,

(34)

where ω < ω0. Replacing the sum by an integral, and
changing to polar spherical coordinates (kx, ky, kz) →
(ω, θ, ψ), θ being now the angle between k and r′ − r′′,
we get, after the integration over θ and ψ:

〈EZP(t)EPDC
2 (t′)〉+ 〈EZP(t′)EPDC

2 (t)〉

=
~

πr(2π)3ε0

∫ ω0

0

dω (ω0 − ω)2ω
5

c3ω
cos[ω(t− t′)]

×
∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)

× e−ik0·(r′−r′′)e−iω r·r′′
rcω e

i(ω−ω0) |r
′−r′′|
cω0−ω

|r′′ − r′|

× ei ωrcω sinc
[
ω|r′ − r|

cω

]
+ c.c. (35)

We now use the far field approximations (21) in order to
express the last term of equation (35) in the following way:

ei ωrcω sinc
{
ω|r′ − r|

cω

}
≈ cω

2irω
[−eiω r·r′

rcω + e2i ωrcω e−iω r·r′
rcω ].

(36)

Because of the distance r is much larger than the typical
wavelength of light, the second term of (36) is rapidly
oscillating as a function of ω, and its net contribution
to the integral is negligeable. After some easy algebra in
which some change of variables is made in order to obtain a
more compact expression, we arrive at the following result:

〈EZP(t)EPDC
2 (t′)〉+ 〈EZP(t′)EPDC

2 (t)〉

=
2~

(2π)4r2ε0

∫ ω0

0

dω (ω0−ω)4ω
3

c3ω

c2ω
c2ω0−ω

cos[(ω0−ω)(t−t′)]

×
∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)e
−i(ω−ω0) r·(r′−r′′)

rcω0−ω

× e−ik0·(r′−r′′)sinc
[
ω|r′ − r′′|

cω

]
· (37)

Now it is time to analyze the results obtained up to here
and resumed in equations (33, 37). In previous works [9],
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when the theoretical treatment was based on the standard
Hamiltonian model, the contribution to the PDC phenom-
ena coming from (33, 37) were equal. In the present and
more detailed analysis we see that there is a small differ-
ence between them, arising from the ratio c2ω/c

2
ω0−ω. This

factor, although close to unity, is exactly one only in the
degenare case, ω = ω0/2.

Let us finally consider the rest of contributions of the
autocorrelation. Similar calculations in which (22, 27) are
used, led to the following expressions:

〈EZDC
1 (t)EZDC

1 (t′)〉

=
2~

(2π)4r2ε0

∫ ω0

0

dω (ω0 + ω)3 ω4

c3ω0+ω

cos[ω(t− t′)]

×
∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)eiω r·(r′−r′′)
rcω

× eik0·(r′−r′′)sinc
[

(ω0 + ω)|r′ − r′′|
cω0+ω

]
, (38)

〈EZP(t)EZUC
2 (t′)〉+ 〈EZP(t′)EZUC

2 (t)〉

= − 2~
(2π)4r2ε0

∫ ω0

0

dω (ω0 + ω)3 ω4

c3ω0+ω

c2ω0+ω

c2ω
cos[ω(t− t′)]

×
∫
Ω

d3r′
∫
Ω

d3r′′ V (r′)V (r′′)eiω r·(r′−r′′)
rcω

× eik0·(r′−r′′)sinc
[

(ω0 + ω)|r′ − r′′|
cω0+ω

]
· (39)

The results obtained in equations (38, 39) show that these
two terms are very similar, but with opposite sign. They
do not cancel each other because of the factor −c2ω0+ω/c

2
ω

in (39). This difference will give rise to a net contribu-
tion to the intensity spectrum coming from the up and
down conversion of the ZPF. In this way we predict a
new phenomena which is not predicted in the standard
treatments. A similar result was obtained by one of us
from a different approach and we refer to that work for
details [17]. We shall not develop this point here because
a correct treatment of it can only be performed by taking
into account the polarization of the electric field, and not
in the present scalar approximation. For this reason the
rest of the paper will be devoted only to the study of the
spectral properties of the PDC radiation.

5 Analysis of the PDC spectrum

The quantum theory of detection in the Wigner represen-
tation shows that the single detection rate at the position
r and time t is proportional to the quantity (for more
details see Refs. [9,11])

P1(r, t) ∝ 〈I(r, t)− I0(r)〉, (40)

I ∝ |E|2 being the total intensity of light and I0 ∝
〈|EZP|2〉 the average intensity of the zeropoint field. I and
I0 are not well-defined if we do not specify which is the

relevant frequency range involved in the sum over k (that
range is essentially defined by the detectors). However,
I − I0 is well-defined because for all modes which do not
take part in the detection that difference is zero. Because
the substration of the zeropoint intensity plays an essential
role in the detection process, our analysis of the spectral
properties of the radiated field will start from the following
expression:

I(ν, r) = cε0

∫ +∞

−∞
(〈E(r, t)E(r, t′)〉−〈EZP(r, t)EZP(r, t′)〉)

× cos[ν(t− t′)] d(t− t′), (41)

where c is a typical value of the velocity of light in the
nonlinear medium, which has been introduced in order
to get I(ν, r) in units of energy per unit area and unit
frequency interval.

By taking into account the relations between the dif-
ferent terms of the autocorrelation, for the different parts
of the PDC radiated field, we have

IPDC(ν, r) = cβ2ε0

(
1 +

c2ω0−ν
c2ν

)
×
∫ +∞

−∞
〈EPDC

1 (r, t)EPDC
1 (r, t′)〉 cos[ν(t− t′)] d(t− t′),

(42)

where 〈EPDC
1 (r, t)EPDC

1 (r, t′)〉 was obtained in (32).
The integral on the volume of the non linear crystal

that appears there is straightforward. By substituting (32)
into (42) and performing the integral in t− t′ we arrive at

IPDC(ν, r) = πβ2(1 +
c2ω0−ν
c2ν

)F (r)
1
L3

0

×
∑
k

ω(ω0 − ω)4δ(ω0 − ω − ν)

× exp
{
−R2[(ω0 − ω)

x

rcω0−ω
+ kx]2

−R2[(ω0 − ω)
y

rcω0−ω
+ ky ]2

}
× sinc2

{
L

2
[(ω0 − ω)

z

rcω0−ω
+ kz − k0]

}
, (43)

where

F (r) = c~
(
R2LV0

r

)2

, (44)

L being the length of the crystal and r = xux + yuy +
zuz. From now on we shall take r in the plane OXZ,
without a loss of generality, i.e. y = 0. Passing to the
continuum and changing to polar spherical coordinates
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IPDC(ν, x, z) =
β2F (r)

8π3/2
(1 +

c2ω0−ν
c2ν

)

Z 1

−1

d(cos θ)

Z ω0

0

ω3 dωδ(ω0 − ω − ν)(ω0 − ω)4

×
exp

�
−R2[(ω0 − ω)2 x2

r2c2
ω0−ω

+ ω2

c2ω
sin2 θ − 2(ω0 − ω) x

rcω0−ω
ω
cω

sin θ]

�

c3ωR
q

(ω0−ω)xω sin θ
rcωcω0−ω

sinc2

�
L

2
[(ω0 − ω)

z

rcω0−ω
+

ω

cω
cos θ − k0]

�
. (48)

IPDC(ν, α, r) =
β2F (r)ν4

4Lπ1/2

(ω0 − ν)2

c2ω0−ν

�
1 +

c2ω0−ν
c2ν

� exp

(
−R2

"
ν
cν

sinα− (ω0−ν)
cω0−ν

r
1−

c2ω0−ν
(ω0−ν)2

[ω0
c0
− ν

cν
cosα]2

#2)

R

s
ν sinα(ω0−ν)
cνcω0−ν

r
1−

c2ω0−ν
(ω0−ν)2

[ω0
c0
− ν

cν
cosα]2

· (51)

(kx, ky, kz)→ (ω, θ, ψ), the polar axis being uz , we have:

IPDC(ν, x, z) =
β2F (r)

8π2
(1 +

c2ω0−ν
c2ν

)

×
∫ 2π

0

dφ
∫ 1

−1

d(cos θ)
∫ ω0

0

dω
ω3

c3ω
(ω0 − ω)4δ(ω0 − ω − ν)

× exp
{
−R2[(ω0 − ω)2 x2

r2c2ω0−ω
+
ω2

c2ω
sin2 θ

+2(ω0 − ω)
x

rcω0−ω

ω

cω
sin θ cosφ]

}
× sinc2

{
L

2
[(ω0 − ω)

z

rcω0−ω
+
ω

cω
cos θ − k0]

}
. (45)

The integration in φ is straightforward:∫ π

−π
dφ e−m cosφ '

(2π
m

)1/2em, (46)

if m� 1. In our case

m = 2R2(ω0 − ω)
x

rcω0−ω

ω

cω
sin θ, (47)

which is, roughly speaking, the squared ratio between the
radius of the laser and the wavelength of the radiation,
much greater than 1, and therefore

see equation (48) above.

By performing the integration in ω

IPDC(ν, x, z) =
β2F (r)ν4(ω0 − ν)3

8π3/2
(1 +

c2ω0−ν
c2ν

)

×
∫ 1

−1

d(cos θ)
exp

{
−R2[ νxrcν −

(ω0−ν)
cω0−ν

sin θ]2
}

c3ω0−νR
√

νx(ω0−ν) sin θ
rcνcω0−ν

× sinc2

{
L

2
[
νz

rcν
+
ω0 − ν
cω0−ν

cos θ − ω0

c0
]
}
. (49)

In the former expression there is one Gaussian factor and
one sinc squared. These functions are important only for
a small range of frequencies. This means that in the case of
large values of R or large values of L one of these functions
can be approximated by a delta. Let us study these two
limiting cases, which correspond to R being much greater
or much smaller than Lx/r.

Case I: Long crystal (L→∞)

If we multiply and divide by L/2 and take the limit L→∞
in the appropriate place we get

IPDC(ν, x, z) =
β2F (r)ν4(ω0 − ν)3

4Lπ1/2c3ω0−ν
(1+

c2ω0−ν
c2ν

)
∫ 1

−1

d(cos θ)

×
exp

{
−R2[ νxrcν −

(ω0−ν)
cω0−ν

sin θ]2
}

R
√

νx(ω0−ν) sin θ
rcνcω0−ν

× δ
(
νz

rcν
+
ω0 − ν
cω0−ν

cos θ − ω0

c0

)
· (50)

Using ∫
dx δ[f(x)]g(x) =

∑
i

g(xi)
|f ′(xi)|

; f(xi) = 0,

and making x/r = sinα, z/r = cosα, we obtain

see equation (51) above.

By considering typical values of the experimental param-
eters (R ≈ 10−3 m, ω0 ≈ 1015 rad s−1) we have(

Rω0

c

)2

≈ 108, (52)

and then, for a given value of α,the relevant contributions
to the intensity are those coming from frequencies nearly
equal to να, the frequency that maximizes IPDC(ν, α, r).
It is the one that makes the exponent of the first term
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IPDC(ν, α, r) =
β2F (r)ν3cν(ω0 − ν)2

8πR2c2ω0−ν sinα
(1 +

c2ω0−ν
c2ν

)

sinc2

(
L
2 [ νcν cosα+ ω0−ν

cω0−ν

r
1−

ν2c2ω0−ν
c2ν (ω0−ν)2

sin2 α− ω0
c0

]

)
r

1−
ν2c2ω0−ν
c2ν(ω0−ν)2

sin2 α

· (59)

equals to zero. By taking into account that x2 + z2 = r2

we have the following relation between να and α for the
optimum position of the detector:

cosα =
z

r
=
[
ν2
α

c2να
− (ω0 − να)2

c2ω0−να
+
ω2

0

c20

]
c0cνα
2ναω0

· (53)

By taking into account (52) we shall express the argu-
ment of the exponential factor of (51) to second order in
ν − να and to zeroth order elsewhere. For simplicity only
two velocities of light will be considered, namely the cor-
responding to the laser c0 and cν ' cω0−ν ≡ c. After some
easy calculations in which we use equation (44), we arrive
at the following expression for the PDC spectrum in the
long crystal case:

IPDC(ν, α, r) =
~R3LV 2

0 β
2ν3
α(ω0 − να)2

2π1/2r2 sinα
e
− (ν−να)2

2∆2
α , (54)

where

∆α =
cνα sinα

√
2Rω0

(
1− c

c0
cosα

) , (55)

and, in the case c ≡ cν ' cω0−ν , the relation between να
and α is given by

να =
ω0

2

1− c2

c20

1− c
c0

cosα
· (56)

For instance, if we consider the degenerate case ν = ω0/2,
α is given by the relation cosα = cω0/2/c0, and then

∆α =
c

2
√

2R sinα
, (57)

expression that coincides with the inverse of the correla-
tion time between signal and idler photons (see Eq. (50)
of Ref. [12]). This agreement between the coherence time
of the signal (or the idler) beam and the cross-correlation
time is remarkable and it is the basis of the most relevant
properties of PDC (in common language it is expressed
by saying that the two partner photons are emitted at the
same time).

Case II: Short crystal (R→∞)

Now let us explore the consequences of assuming a very
large radius of the pumping: R→∞. Taking into account
that

lim
R→∞

Re−R
2x2

=
√
πδ(x), (58)

the spectrum is, from (49)

IPDC
1 (ν, x, z) =

β2F (r)ν4(ω0 − ν)3

8πRc3ω0−ν

∫ 1

−1

d(cos θ)

×
δ( νxrcν −

(ω0−ν)
cω0−ν

sin θ)

R
√

νx(ω0−ν) sin θ
rcνcω0−ν

× sinc2

{
L

2
[
νz

rcν
+
ω0 − ν
cω0−ν

cos θ − ω0

c0
]
}
·

Therefore

see equation (59) above.

By considering typical values (L ≈ 10−2 m, ω0 ≈
1015 rad s−1) we have

Lω0

c
≈ 105,

and then, for a given value of α, the relevant contributions
to the intensity are those coming from frequencies nearly
equal to να, the frequency that maximizes IPDC(ν, α, r). It
is the one that makes the argument of the sinc2 equals to
zero, and coincides with (53). Now, by expanding to first
order in of ν − να the argument of the sinc and to zeroth
order elsewhere, and by using equation (44) we arrive at
the following result:

IPDC(ν, α, r) =
~L2R2V 2

0 β
2ν3
α(ω0 − να)2

4πr2 sinα
√

1− ν2
α

(ω0−να)2 sin2 α

×sinc2

(
ν − να
∆α

)
, (60)

where

∆α =
2c
(
να cosα− c

c0
ω0

)
Lω0

(
1− c

c0
cosα

) · (61)

Again, if we consider the degenerate case, it can be easily
proved that the width of the sinc2 function is of the same
order of the quantity c cosα/L sin2 α, corresponding to the
inverse of the correlation time between signal and idler
photons (see Eq. (41) of Ref. [12]).

6 Discussion: PDC experiments and local
realism

This is the sixth of a series of articles devoted to the study
of parametric down conversion in the Wigner-function
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formalism. In the first four [8–11] we started from a Hamil-
tonian approach and showed that all PDC experiments
performed until the end of 1997 may be interpreted
within the formalism. It is also possible to interpret more
recent experiments; for instance we may predict all the
correlations which are actually measured in reported
quantum teleportation experiments [18,19]. This simply
confirms that the Wigner representation is a valid formu-
lation of quantum optics, fully equivalent to the more com-
mon Hilbert space formalism. But the Wigner function
provides an intuitive picture of PDC in terms of classical
(Maxwell) waves propagating causally in space and time.
The only difference with standard classical electrodynam-
ics is the presence of a random electromagnetic radiation
(zeropoint field, ZPF) filling the whole space. That radia-
tion may be expanded in plane waves and the probability
distribution for the amplitudes is given by equation (9). A
crucial point for the possibility of a classical picture is the
fact that the Wigner distribution is, in the case of PDC,
positive definite.

In our last two papers on PDC ([12] and the present
one) we use an approach more fundamental than the
model Hamiltonian; in fact we start from the quantized
electromagnetic field in the nonlinear crystal. As a re-
sult we have shown that the production of PDC radiation
is formally equivalent to the classical polarization of the
crystal by the combined action of the laser pump and the
zeropoint field, which causes the crystal to reemit radi-
ation. We have studied the stochastic properties of that
radiation by calculating the cross-correlation of signal and
idler [12] and their autocorrelations (in the present pa-
per). In both cases we have used a standard perturbative
expansion of the retarded (causal) Green’s function. It is
interesting that the intensity of the cross-correlation (cal-
culated in Ref. [12]) may be obtained to second order by
just calculating the field to first order, whilst we need the
field to second order for the autocorrelation, so that the
latter is substantially more difficult than the former. From
these correlations we have been able to derive the correla-
tion time of what in standard quantum language are called
“signal and idler photons”, and also the spectrum of the
emitted radiation, all in terms of the parameters of the
crystal and the pumping beam.

It is remarkable that in the Wigner-function formal-
ism there is no trace of “photons”; we have just correlated
waves. Effects like the strong correlation between colour
and direction of emission, which in the standard (Hilbert
space) approach appears as derived from the conservation
of energy and momentum in the process of splitting of a
laser photon, are, in the Wigner-function approach, a con-
sequence of energy and momentum conservation of the
field. And the directionality appears, as is typical in wave
optics, due to the interference (constructive in a specific
direction, destructive otherwise) of the radiation emitted
from all points of the crystal. Then it is not surprising
that the bigger the crystal the better the directionality of
the emitted radiation, as shown in [12] and the present pa-
per, a relation which is less clear in the standard (Hilbert
space) approach. Even effects so typically quantal as the

“photon entanglement”, appear in the Wigner-function
formalism just as correlations which involve both the zero-
point and the superimposed radiation, whilst normal cor-
relation involves only the radiation above the ZPF (see
Sect. 5 of Ref. [11]).

The above discussion leads us to an apparently para-
doxical situation. We have arrived at a purely wave (clas-
sical) picture of PDC and, nevertheless, PDC is the phe-
nomenon most frequently claimed to exhibit non-classical
aspects of light, like teleportation or violation of the Bell
inequality. Clearly this situation requires a deeper study,
which we now make.

We begin by substituting a better expression for the
somewhat ambiguous word “classical”. We propose “local
realist” or “local hidden variables” (LHV) model in the
well defined sense given by Bell [20]. We shall call local
realist any theory where the probability of a coincidence
photocount may be obtained from the expression

P12 =
∫
ρ(λ)P1(λ, φ1)P2(λ, φ2)dλ , ρ(λ) ≥ 0,∫

ρ(λ)dλ = 1; 0 ≤ P1(λ, φ1), P2(λ, φ2) ≤ 1 , (62)

and similar expressions for single counts, triple coincidence
counts, etc. Here λ represent the hidden variables and φ1,
φ2 are controllable parameters (e.g. angles of polarization
of the polarizers). As is well-known, from (62) it is possible
to derive the Bell inequalities which are, therefore, neces-
sary conditions for local realism. Many of these inequali-
ties have been reported to be violated in experiments, but
in all of them there exist loopholes for the refutation of
LHV models [21,22]. Actually the inequalities which have
been violated in experiments are derived from (62) plus
additional hypotheses which cannot be tested. Typical of
these is “no-enhancement” [6]. We shall see in the follow-
ing that the additional hypotheses are naturally violated
in a LHV model derived from the Wigner-function formal-
ism of PDC.

In the analysis of the experiments, which we have made
using the Wigner-function formalism [8–11], the joint de-
tection probability appears in the form

P12 = const×
∫

dt1
∫

dt2〈(I1(r1, t1)− I01)

× (I2(r1, t2)− I02)〉, (63)

where I1(I2) is the light intensity arriving at the first (sec-
ond) detector, placed at r1(r2), at time t1 (t2). The in-
tegrals extend over appropriate detection time-windows,
and I01, I02 are parameters corresponding to the average
intensity of the zeropoint. Actually those modes of the ra-
diation which contain only zeropoint, without additional
radiation, contribute equally to the averages of I1 and I01,
and therefore cancel out in the difference, and similarly
for I2− I02. Consequently only a few modes are needed in
practice, but there is no problem if we include more modes
than those strictly needed. In any case equation (63) was
derived including only modes corresponding to a beam
of almost parallel wave vectors. If this is not the case



118 The European Physical Journal D

we should write equation (63) using the Poynting vector
rather than the intensity (see below). The proportionality
constant in equation (63) is irrelevant for many purposes,
including the test of those “Bell inequalities” which are
derived using additional hypotheses. But that constant is
very relevant for the test of genuine Bell inequalities, de-
rived from local realism alone [23]. Consequently we shall
write equation (63) in a more complete form, which also
shows the precise meaning of the average represented by
〈 〉. We have

P12 =
∫
W ({αk}, {α∗k})Q1({αk}, {α∗k}, φ1)

×Q2({αk}, {α∗k}, φ2)dNαkdNα∗k , (64)

Qj({αk}, {α∗k}, φj) = ηj(hνj)−1

×
∫

dt1
∫

d2rj [Ij({αk}, {α∗k}, φj , rj , tj)− I0j ] , (65)

where j = 1, 2, W is the “vacuum” Wigner function
(Eq. (9)), N is the number of modes (in practice we should
take the limit N →∞ at some appropriate moment), k la-
bels the wave vector and polarization of one mode. I1 and
I2 are complicated functions of the amplitudes {αk} and
{α∗k} which take account of the evolution, including the ef-
fect of the nonlinear crystal and the various optical devices
present in the experiment (we refer to our articles [8–11]
for details). These devices may contain controllable pa-
rameters which we have labeled φ1 and φ2. In addition to
the time integration we have included an integration over
the surface aperture of the detector. We have divided by
the typical energy of one “photon” so that Qj becomes
dimensionless. Finally ηj is the quantum efficiency of the
detector.

The relevant question is whether (64) may be consid-
ered a particular case of (62). If the answer is affirmative
(negative) the formalism provides (does not provide) an
explicit LHV model for the experiment, which therefore is
(is not) compatible with local realism. We see that (64)
looks precisely like (62) with the amplitudes {αk} and
{α∗k} playing the role of the hidden variables λ. Indeed,
the Wigner functionW , playing the role of ρ(λ), is positive
definite (see Eq. (9)) and normalized. The problem ap-
pears with the positivity of Qj . (The requirement Qj ≤ 1,
certainly holds for the low quantum efficiencies of the ex-
periments). Now Qj may be negative because the differ-
ence I1−I01 (or I2−I02) is not always positive. The prob-
lem is not the huge value of the zeropoint energy (about
105 W/cm2 for the ZPF in the visible range), because
the threshold intensity I0 cancels precisely that intensity.
The problem lies in the fluctuation of the intensity. For
the weak light signals of the experiments Ij may have
fluctuations such that Ij < I0j . The problem of the non-
positivity of Ij − I0j is alleviated by the time and space
integrations in (65). Indeed, the fluctuations of the in-
tensity are strongly reduced by those integrations as the
Heisenberg (uncertainty) relations show. But we can guar-
antee the positivity of Qj only in the limit of infinitely

wide time-windows and infinitely large apertures, which
is non-physical. Consequently we conclude that it is not
possible to interpret directly the Wigner-function formal-
ism as a LHV model for the PDC experiments.

In spite of the above conclusion, it is not without inter-
est to study whether some modification of Qj might give a
LHV theory compatible with the experiments, though not
precisely with the quantum predictions (which are given
by the unmodified Eq. (64)). The question of a modifica-
tion of quantum theory has been rejected by most, because
of the spectacular success of that theory. However, we are
not proposing any modification in the foundations of the
quantum theory, but rather a change in the description
of that complicated macroscopic system which is a pho-
ton counter. Equation (65) is the quantum prediction (in
the Wigner representation) for the behaviour of an ideal
detector. Every experimentalist knows that a real device
is quite different from an ideal one in many respects. So
what we propose is a realist theory of detection, in place of
the model of instantaneous collapse which has been used
hitherto.

An objection to any attempt at interpreting
equation (65), or any small modification of it, as a “classi-
cal” (LHV) model is that any classical detector should be
sensitive to the total radiation intensity, Ij , rather than to
the difference Ij−I0j . We do not agree with that. In fact,
it is natural to assume that the detection should depend
on the total flux of energy crossing the aperture during
the time-window and this flux is given by an appropriate
integral of the Poynting vector, rather than the intensity.
Therefore we should write, instead of equation (65) the
following

Qj({αk}, {α∗k}, φj) = ηj(hνj)−1

×
∫

dt1
∫

d2rj Sj({αk}, {α∗k}, φj , rj , tj), (66)

where Sj is the component of the Poynting vector perpen-
dicular to the entrance area of the detector. Equation (66)
is not equal to equation (65), but the average shown in (64)
is the same in both cases. The reason is that the average of
the Poynting vector of the ZPF alone is zero, and the av-
erage of the contribution of the signal is the same whether
we use the component of the Poynting vector or the in-
tensity. Therefore we have not modified the quantum pre-
diction up to this point. Still equation (66) is not positive
definite, but now it is not difficult to imagine that a mod-
ification might be possible by making it positive without
departing too much from the ideal quantum prediction
equation (62). A model of such a detector has been pre-
sented elsewhere (for other purposes) which suggests that
it is possible [24].

Finally we comment on the no-enhancement assump-
tion. In a beam splitter (semitransparent mirror or polar-
izer) we should take into account both the signal and the
“vacuum” zeropoint fields, so that at the outgoing chan-
nels (1 and 2) of this device, the electromagnetic fields
E

(+)
1 and E(+)

2 , are given in terms of the incoming signal,
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E
(+)
S , and zeropoint, E(+)

ZP , fields by

E
(+)
1 (r, t) = TE

(+)
S (r, t) + iRE(+)

ZP (r, t),

E
(+)
2 (r, t) = TE

(+)
ZP (r, t) + iRE(+)

S (r, t), (67)

where T (R) is the transmission (reflection) coefficient.
This fact is essential in order to preserve the commutation
relations in the beam-splitter [25].

The “no-enhancement assumption” essentially means
that the intensity of a signal outgoing from a polarizer can
never be greater than the incoming signal, and it is con-
sidered plausible because the beam-splitter divides the in-
tensity. Equation (67) clearly shows that this assumption
is naturally violated in any theory where the zeropoint
field is real. The intensity at the outgoing channel may
be greater than the intensity at the incoming channel for
some realizations of the fields, although it will be certainly
smaller on the average. A local realist theory, obtained by
modifying the Wigner representation of quantum optics,
along the lines discussed above, will violate both the “no-
enhancement” assumption and the Bell-type inequalities
derived from it.

In conclusion, parametric down conversion is an ex-
perimental arena for testing some important conceptual
features of quantum mechanics. The Maxwellian approach
introduced here offers a new perspective on the meaning of
these experiments. On the other hand PDC is frequently
used as a way to implement the techniques of quantum in-
formation, and our treatment can help by giving a better
understanding of the correlation properties of this kind of
light. Special attention has been paid to the spectrum of
PDC, because this is one of the main features of the phe-
nomenon. Two limit situations, usually found in the labo-
ratory, have been studied, namely radius of the pumping
beam much greater or much smaller than the length of the
crystal times the sine of the angle between the laser axis
and the wave vector of the emitted light. We recover the
usual expressions for the matching conditions.
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